

ANTONIO VALENZUELA

Prólogo de la DRA. SARI ARPONEN

ACTIVA TUS MITOCONDRIAS

EL SECRETO para una vida más LONGEVA

Activa tus mitocondrias

El secreto para una vida más longeva

ANTONIO VALENZUELA

© Antonio Valenzuela, 2023

© del prólogo: Sari Arponen, 2023

© Centro de Libros PAPF, SLU., 2023 Alienta es un sello editorial de Centro de Libros PAPF, SLU. Av. Diagonal, 662-664 08034 Barcelona www.planetadelibros.com

Primera edición: noviembre de 2023

Depósito legal: B. 18.435-2023

ISBN: 978-84-1344-274-7

Preimpresión: Realización Planeta

Impreso por Blackprint CPI

Impreso en España - Printed in Spain

La lectura abre horizontes, iguala oportunidades y construye una sociedad mejor. La propiedad intelectual es clave en la creación de contenidos culturales porque sostiene el ecosistema de quienes escriben y de nuestras librerías. Al comprar este libro estarás contribuyendo a mantener dicho ecosistema vivo y en crecimiento. En Grupo Planeta agradecemos que nos ayudes a apoyar así la autonomía creativa de autoras y autores para que puedan seguir desempeñando su labor. Dirígete a CEDRO (Centro Español de Derechos Reprográficos) si necesitas fotocopiar o escanear algún fragmento de esta obra. Puedes contactar con CEDRO a través de la web www.conlicencia.com o por teléfono en el 91 702 19 70 / 93 272 04 47.

El papel utilizado para la impresión de este libro está calificado como papel ecológico y procede de bosques gestionados de manera sostenible.

Sumario

Prólogo	15
Prefacio	19
Primera parte	
Todo depende de la energía	
1. Somos energía	23
1.1. Energía para el cambio	24
1.2. Las mitocondrias: las creadoras de «la Fuerza»	26
1.3. El origen: todo surgió de una historia de amor	28
2. Esas bacterias venidas a más	35
2.1. ¿Para qué sirven nuestras mitocondrias?	36
2.2. Morfología y estructura de las mitocondrias	40
3. Dinámica mitocondrial	45
3.1. Fusión y fisión	46
3.2. Mitofagia	47
3.3. Biogénesis mitocondrial: más y mejores	
mitocondrias	49
3.4. La hormesis	52
3.5. Xenohormesis y quercetina	55
SEGUNDA PARTE	
El ciclo de la energía	
4. ATP, el guardián de la homeostasis	61
4.1. La continua búsqueda de la homeostasis	61

$10 \cdot Activa tus mitocondrias$

	4.2. El ATP, la moneda energética	63
	4.3. Extraer la energía: la hidrólisis	65
5.	Todo sobre el magnesio	69
	5.1. Sin magnesio, no hay energía celular	69
	5.2. Funciones del magnesio en nuestro organismo	71
	5.3. Deficiencia de magnesio y sus síntomas	73
	5.4. Fuentes nutricionales y suplementos	76
6.	El metabolismo energético	79
	6.1. La continua transformación de la energía	80
	6.2. Catabolismo y AMPK	82
	6.3. Anabolismo y mTOR	85
	6.4. Flexibilidad metabólica	90
7.	Bioenergética: ¿cómo convierte nuestro organismo	
	los nutrientes en ATP?	93
	7.1. Sistemas bioenergéticos	93
	7.2. Sistema de fosfágenos o anaeróbico aláctico	99
	7.3. Sistema glucolítico o anaeróbico láctico	102
	7.4. Sistema oxidativo o aeróbico	110
8.	El flujo energético y la tiroides	123
	8.1. El concepto de flujo energético	123
	8.2. Tiroides: la gestora de la energía	125
	8.3. Cómo funciona la tiroides y su relación con las	
	mitocondrias	126
	8.4. El hipotiroidismo	128
	8.5. Cómo mejorar la función de tu tiroides	136
	Tercera parte	
	La disfunción mitocondrial: cuando nuestras	
	centrales energéticas se apagan y cómo activarlas	
0	El qué y el porqué de la disfunción mitocondrial	147
9.	9.1. Qué entendemos por disfunción mitocondrial	147 147
	9.2. ¿Qué impacto tiene la disfunción mitocondrial	147
	en nuestra salud?	149
	9.3. Causas de la disfunción mitocondrial	149
10		159
10.	«0 es 3» (crónico)	159
	10.1. Qué entendemos por estrés	
	10.2. Estres agudo frente a estres cronico	162

	10.3. Posibles soluciones al estrés crónico	165
11.	El problemón de la inflamación	171
	11.1. Soluciones antiguas a problemas modernos	171
	11.2. Impacto de la inflamación en nuestras	
	mitocondrias	173
	11.3. El omega 3	174
12.	El estrés oxidativo	177
	12.1. Los radicales libres	177
	12.2. Antioxidantes al rescate	179
	12.3. El papel de Nrf2	186
	12.4. Glutatión, el antioxidante maestro	190
	12.5. Homociste ína: un tóxico mitocondrial	196
	Cuarta parte	
	Más recursos para optimizar tus mitocondrias	
	Tana recursos pura operanam un mitotoriar un	
13.	Recuperar la flexibilidad metabólica	205
	13.1. Modo tripa llena versus modo tripa vacía	207
	13.2. El papel protagonista de la insulina	210
	13.3. Causas de la inflexibilidad metabólica y de la	
	resistencia a la insulina	213
	13.4. Cómo mejorar la flexibilidad metabólica y la	
	sensibilidad a la insulina	223
14.	Mueve tus mitocondrias	237
	14.1. Tenemos el movimiento grabado a fuego	
	en nuestros genes	238
	14.2. El ejercicio físico como medicina	239
	14.3. Aeróbico versus anaeróbico	245
	14.4. Entrenamiento polarizado: zona 2 + alta	
	intensidad	252
	14.5. Profundizando en la alta intensidad	257
	14.6. Recomendaciones finales de ejercicio	
	y mitocondrias	268
15.	Somos hijos de las estrellas	271
	15.1. Helioterapia: las curas de sol	272
	15.2. Luz: entre la física y la biología	273
	15.3. Luz roja	277
	15.4 Luz roja agua y mitocondrias	280

12 · Activa tus mitocondrias

	15.5. Terapia de luces roja e infrarroja cercanas	287
	15.6. Luz ultravioleta y vitamina D	290
	15.7. Luz azul: el demonio está en los detalles	295
	15.8. Un breve resumen práctico	301
16.	El <i>electrosmog</i> , la niebla invisible que nos rodea	305
	16.1. La nueva Gran Niebla de Londres	305
	16.2. Frecuencias electromagnéticas	
	antropogénicas	307
	16.3. ¿Qué puedes hacer para reducir tu	
	exposición?	309
17.	NAD+, sirtuinas y longevidad	315
	17.1. Inestabilidad genómica y telómeros	315
	17.2. <i>Bitaminas</i> para tus mitocondrias: el grupo B	318
	17.3. STAC (SirTuin Activating Compounds)	320
18.	La conexión entre microbiota y mitocondria	323
	18.1. Los posbióticos	324
	18.2. Alimentos fermentados	328
	18.3. Otros hábitos probióticos	331
	18.4. ¿Qué es lo que daña nuestra microbiota?	333
19.	La hemos liada parda con la grasa	337
	19.1. Termogénesis: la respuesta de nuestro cuerpo	
	al frío	337
	19.2. La grasa parda	338
	19.3. Cómo activar nuestra grasa parda	340
20.	,	349
	20.1. Simular el ejercicio físico	349
	20.2. El protocolo Søberg completo para unas	
	mitocondrias atómicas	350
21.	La hipoxia intermitente	353
	21.1. El oxígeno, el factor limitante del metabolismo	
	mitocondrial	354
	21.2. Asegurar un buen flujo sanguíneo	355
	21.3. Respira bien	358
	21.4. Qué es y cómo practicar la hipoxia	
	intermitente	360

QUINTA PARTE Una rápida guía práctica

22.	Alimenta tus mitocondrias	367
	22.1. La nutrición no es sólo comida	367
	22.2. Los 25 alimentos imprescindibles para tus	
	mitocondrias	368
	22.3. Resumen de suplementos	370
23.	Conquista tus mañanas	373
	23.1. Protocolo de activación mitocondrial matutina	373
	23.2. Levántate más temprano	374
	23.3. Fórmula 20-20-20	375
	23.4. Desayuno	377
24.	Creando la noche perfecta	379
	24.1. Protege tu melatonina	379
	24.2. Por la tarde	380
	24.3. Por la noche	380
	24.4. Suplementación para optimizar nuestro sueño	381
A	- Assimilation	202
	adecimientos	383
Bib	liografía	385

Prefacio

«Leemos para saber que no estamos solos», decía C. S. Lewis en *Tierras de penumbra*. Cuando abrimos un libro, ya no estamos solos, aunque no haya personas alrededor. Me gusta pensar que la literatura es una especie de conversación con alguien que no está, pero que nos habla.

Gracias a mi admirada Nuria Pérez aprendí, en uno de sus pódcast, un concepto de la tradición celta llamado *anam cara*. *Anam* significa 'alma' y *cara*, 'amigo'. El *anam cara* es el amigo del alma, alguien con quien no tienes secretos y que saca lo mejor de ti.

Los celtas creían que los *anam cara* estaban unidos para siempre porque el alma no conoce los límites del tiempo ni del espacio. Por eso, aunque no nos conozcamos, nos conocemos. Así que, por favor, tómate este libro como la conversación con tu amigo Antonio.

No necesitas que un gurú te diga que lo estás haciendo todo mal y que tu vida es una mierda para venderte después un libro lleno de frases hechas, tópicos y atajos que no conducen a ningún sitio pero que, según nuestro iluminado de turno, llevarán tu vida a una especie de nirvana.

Hay partes enormes de la vida adulta de las que casi nadie habla en los libros de salud y bienestar, desarrollo personal y autoayuda. Partes de nuestras vidas que incluyen aburrimiento, rutinas que nos desagradan, pequeñas frustraciones y, por supuesto, esa odiosa sensación de no llegar a todo por más que nos pasemos el día corriendo.

En un día normal de tu vida adulta, seguro que te levantas bien temprano. Ya desde la mañana, las obligaciones te exigen gran parte de tu energía, te pasas el día estresado en un trabajo nada fácil y después llegas a tu casa en la que, por supuesto, hay más cosas que hacer. Tu jornada termina muy tarde y lo único que quieres es cenar rico, relajarte un par de horas y meterte en la cama porque al día siguiente hay que levantarse temprano y volver a hacerlo todo y todo bien. Y, por supuesto, todo a gran velocidad.

Yo no te voy a dar recetas milagrosas, ni tampoco venderte soluciones mágicas. Ni siquiera voy a pedirte que cambies, ya que eres una persona perfecta tal y como eres. Lo único que pretendo es que aprendas a valorarte en el presente para que desde ahí construyas la persona que quieras ser en tu futuro.

La distancia que nos separa entre lo que somos y los que nos gustaría ser es a menudo una gran fuente de insatisfacción y de frustración. No te lo dice el «Antonio experto», te lo dice la persona que pasó por ahí y que aún pasa de vez en cuando.

La única diferencia es que yo he adquirido herramientas para no entrar en bucles mentales paralizantes y limitantes y he incorporado hábitos saludables en mi día a día. Pero no ha sido de la noche a la mañana. Créeme... Ha llevado su tiempo. Años de trabajo interior, muchas formaciones y lo aprendido de las innumerables personas a las que he acompañado en sus procesos de cambio.

No pretendo que lo hagas todo perfecto, ni siquiera que lo hagas todo. Quédate con aquello que resuene contigo y aplícalo en tu vida. Si sacas una idea útil de este libro, todo el esfuerzo que he puesto en escribirlo (y no ha sido poco, pues, literalmente, me ha costado un cólico nefrítico) habrá merecido la pena.

Sólo me queda darte las gracias de corazón, mi querido *anam* cara, por invertir lo más preciado que tienes, tu tiempo, en leer este libro. Hagamos que valga la pena.

PRIMERA PARTE

TODO DEPENDE DE LA ENERGÍA

Somos energía

La energía es la capacidad de hacer funcionar las cosas. Es una definición absurdamente simple, sí, pero nos sirve como punto de partida a todo lo que estás a punto de descubrir en este libro. Si te paras a pensar, todo lo que funciona depende de la energía. Desde los medios de transporte a los aparatos electrónicos y los analógicos, nada puede cumplir su función sin ella. Incluso una simple escoba funciona gracias a la energía que nosotros le imprimimos al moverla. En una escala global, la energía es motor del avance de las sociedades: sólo hay que ver cómo muchos países, a lo largo de la historia, han entrado en conflictos bélicos por hacerse con preciados recursos energéticos como el petróleo, el gas o el carbón.

Pero si hay algo en lo que la energía resulta imprescindible es en la supervivencia de los organismos vivos. La ley de la entropía, que rige el universo, predice la tendencia de todo lo que existe a destruirse de una forma natural e inevitable. Todo en el universo tiende a la nada, al vacío absoluto. Lo que permite a los organismos vivos frenar el avance inexorable de esa destrucción es la energía, un suministro constante de energía capaz de garantizar su existencia. La vida es algo mágico.

Puede sonar aterrador, pero la realidad es que cada día que pasa nuestro organismo se deteriora levemente. Es la ley del universo. Necesitamos energía diaria para construir y renovar cada una de las partes de nuestro organismo que es presa de la entropía. Eso es la vida: la capacidad de desafiar al mismo universo convirtiendo su energía en un elemento que pueda ser usado para luchar contra la nada. Las especialistas en ese milagro son unos seres muy particulares: **las mitocondrias**.

Como ya hemos dicho, sin energía no hay vida. Pero hay muchos tipos de seres vivos. Los hay tan simples como las bacterias, que no son más que células aisladas, muy primitivas (llamadas procariotas), y los hay tan complejos como nuestra especie, en la que alrededor de 37,2 billones de células modernas (llamadas eucariotas), equipadas con sofisticados instrumentos de producción de energía, las mitocondrias, cooperan entre sí.

Siempre me ha fascinado la idea ser una inmensa colonia de células funcionando todas a una en pos de un bien común. El funcionamiento de un organismo multicelular es algo casi mágico: millones de células deciden cooperar y diferenciarse en distintos tejidos para crear un ser superior a ellas de forma aislada. Una planta. Un gato. Una persona. Tú. Cualquiera de estos ejemplos sólo es posible con la cooperación de toda esa ingente colonia de células. Solamente tienes que ver el desastre que se produce cuando una de ellas rompe con su compromiso y decide independizarse... Esto es el inicio del cáncer.

Para que un ser pluricelular pueda existir necesita de una tremenda eficiencia energética. Y para ello son imprescindibles las mitocondrias, encargadas de producir de manera limpia la energía suficiente para existir y para, cada día, enfrentarse a ese deterioro que va creándonos la ley de la entropía. Tus mitocondrias, esos orgánulos diminutos dentro de cada una de tus células, combaten día tras día contra la fuerza de todo el universo.

1.1. Energía para el cambio

Marco Aurelio, el emperador filósofo, solía decir que la calidad de nuestra vida dependía de la calidad de nuestros pensamientos. Yo no podría estar más de acuerdo. Si te detienes a pensar un minuto, caerás en la cuenta de que el devenir de nuestra vida depende, en un alto porcentaje, de las decisiones que tomamos. Qué y cuándo comemos, la hora a la que nos vamos a la cama, las personas con las que nos relacionamos, los libros que leemos, cómo de acti-

vos físicamente somos... Todo son decisiones y todas impactan en la calidad de nuestra vida.

Pero no nos vamos a engañar: decidir lo que más nos conviene a menudo es muy difícil. Todos sabemos, a grandes rasgos, qué es comer bien, que deberíamos hacer más ejercicio, que tendríamos que dedicar tiempo a meditar y a pasear por la naturaleza... Sin embargo, el ritmo frenético de la vida moderna consume toda nuestra energía y, encima, nos hace sentir como unos vagos perezosos por no dedicar más tiempo a cuidarnos.

Igual que es imposible entender la fisiología y la genética de un pez sin estudiar el agua, es imposible entender al ser humano sin estudiar el contexto en el que vive. En *Esto es agua*, un discurso para los graduados de la Universidad de Kenyon, David Foster Wallace narró un pasaje en el que dos peces nadan uno junto al otro cuando se topan con un pez más viejo avanzando en sentido contrario. Éste los saluda y dice: «Buen día muchachos, ¿cómo está el agua?», antes de seguir su camino. Los dos peces siguen nadando hasta que, después de un tiempo, uno se gira y le pregunta al otro: «¿Qué demonios es el agua?».

Para no caer en el error de esos dos jóvenes peces, incapaces de identificar el entorno en el que vivían, nosotros debemos tener en cuenta nuestro contexto. Y la realidad es que vivimos en una sociedad enferma, rodeados de toxicidad tanto en el aire como en los alimentos, además de, por supuesto, en las emociones y los pensamientos. Vivimos en un ambiente que promueve y estimula hábitos y comportamientos que conducen a la enfermedad. Escaleras mecánicas y ascensores por doquier, falta de carriles bici, una vida frenética enfocada en producir que nos aleja de dedicar tiempo a las personas que nos importan, entre las que estamos nosotros mismos. Nos bombardean con publicidad sobre alimentos deliciosamente insanos: que si las patatas fritas más crujientes, la hamburguesa más sabrosa, el helado con más toppings. Esto es especialmente grave en el caso de los más pequeños, que ven hasta treinta mil anuncios televisivos de comida en un año.¹

1. Según el informe «A Future for the World's Children?», elaborado por una comisión convocada por la revista *The Lancet*, la OMS y UNICEF.

El contexto influye en todo. Los determinantes socioambientales y las condiciones de vida determinan la salud. Estar tan acostumbrados a ellos que no nos damos cuenta no es necesariamente bueno. Recuerda las palabras del pensador Jiddu Krishnamurti: «No es un signo de buena salud estar bien adaptados a una sociedad enferma».

No podemos cambiar esta sociedad que nos hace enfermar o, al menos, no de una manera inmediata. No podemos cambiar el contexto. Tenemos que cambiar nosotros, lo que implica tomar decisiones de salud individuales y a menudo en contra de lo que hace la mayoría. Conviene repetirse este mantra: «Decisiones dificiles = Vida fácil. Decisiones fáciles = Vida difícil».

Nuestro cerebro es el que decide. Es el timonel de la salud, la máquina más compleja del universo. Pero un cerebro sin energía no podrá decidir con claridad, mucho menos si ello supone dejar de seguir al rebaño. Cuanto peor estamos, menos energía tenemos. Por ello, debemos potenciar la capacidad de nuestro organismo de producir esa energía necesaria para cambiar. Esta responsabilidad recae sobre nuestras mitocondrias

Nuestro objetivo no debería ser **añadir años a nuestra vida, sino vida a nuestros años**. Vivir más, llenar nuestra existencia de vida, de experiencias enriquecedoras. Debemos vivirlas, disfrutarlas y, por supuesto, poder recordarlas. Es nuestro cerebro el que decide y recuerda, el que otorga un sentido al tiempo que permanecemos vivos. Y necesita toda la energía que podamos darle.

1.2. Las mitocondrias: las creadoras de «la Fuerza»

Nací en 1983. Pasé mi infancia cogiendo prestadas fregonas en casa, imaginando que eran espadas láser con las que emulaba ser un caballero Jedi. Los míticos héroes inventados por George Lucas en la saga cinematográfica *Star Wars* eran unos seres extraordinarios con una inteligencia, una moral y unas habilidades mayores que el resto de las personas. El secreto de sus grandes poderes residía en la «Fuerza» que, en palabras del maestro Jedi Obi-Wan Kenobi, «es un campo de energía creado por todos los seres vivos. Nos rodea y nos penetra, une la galaxia».

En las películas, la Fuerza es la fuente interna de energía que impulsa a todos los seres vivos. Se trata de un poder otorgado por los midiclorianos, unos pequeños seres que habitaban en el interior de los Jedi, como explica este diálogo de *Star Wars: Episodio I, La amenaza fantasma*:

Anakin: Maestro, señor... Escuché a Yoda hablar sobre los midiclorianos. Me he estado preguntando qué son los midiclorianos.

Qui-Gon: Los midiclorianos son una forma de vida microscópica que reside dentro de todas las células vivas.

Anakin: ¿Viven dentro de mí?

Qui-Gon: Dentro de tus células, sí. Y somos simbiontes con ellos.

Anakin: ¿Simbiontes?

Qui-Gon: Formas de vida que viven juntas para beneficio mutuo. Sin midiclorianos, la vida no podría existir y no tendríamos conocimiento de la Fuerza. Continuamente nos hablan, diciéndonos la voluntad de la Fuerza. Cuando aprendas a aquietar tu mente, escucharás que te hablan.

La tradición de *Star Wars* sugiere que los midiclorianos son formas de vida microscópicas que viven simbióticamente dentro de las células de todos los seres vivos, con números más altos presentes en individuos con la capacidad de sentir la Fuerza. Quizá te preguntes por qué te estoy contando todo esto. La realidad es que en el diálogo que acabas de leer hay mucha menos ciencia ficción de la que imaginas.

Según el doctor Mark Hom, profesor de Biología de la Universidad Johns Hopkins, George Lucas se inspiró en las mitocondrias para el concepto de midicloriano. Y razón no le falta: el diálogo entre Qui-Gon y Anakin es una descripción detallada de las mitocondrias, las antiguas bacterias simbióticas (sí, has leído bien, antiguas bacterias) que ahora son las centrales energéticas de nuestras células.

Descubiertas por primera vez en 1857 por el fisiólogo Albert von Kölliker, y posteriormente bautizadas como «bioblastos» (gérmenes de vida) por Richard Altmann en 1886, no fueron conocidas como «mitocondrias» hasta doce años después, cuando el zoólogo alemán Carl Benda las rebautizó acudiendo al griego *mi*-

tos ('filamento', 'hilo') y chondrion ('grano'). Tuvieron que pasar más de cincuenta años hasta que, en 1948, se descubriera su función gracias a Hogeboom, Schneider y Palade. Las mitocondrias son un orgánulo tan asombrosamente complejo que hoy en día no dejan de sorprender a la comunidad científica por las importantes funciones que cumplen en el contexto del metabolismo celular.

En *Star Wars*, el mítico Luke Skywalker hace alusión a la Fuerza como «la energía entre todas las cosas, una tensión, un equilibrio que une el universo». Eso mismo es lo que hacen las mitocondrias: captan la energía del universo presente en los alimentos, el oxígeno y en la radiación electromagnética del sol y la convierten en la Fuerza, que, en nuestro caso, es el elemento ATP del que hablaremos más adelante y que nos da la vida.

Antes de que te cuente la estructura y las funciones de las mitocondrias, vamos a detenernos un poco en la increíble historia de amor que nos explica su origen. Como decían los caballeros Jedi: «Qué la Fuerza te acompañe». Aunque para ello tendrás que cuidar de tus mitocondrias.

1.3. El origen: todo surgió de una historia de amor

El cosmos es todo lo que es o lo que fue o lo que será alguna vez.

CARL SAGAN, astrofísico

De niño, *Star Wars* no era lo único que veía en la televisión. Dos de mis series favoritas eran *Cosmos* y *Érase una vez los inventores*. Esta última, que narraba la historia de los grandes descubrimientos de la humanidad y la vida de aquellas personas que los hicieron posibles, incluía en uno de mis capítulos favoritos la vida de Charles Darwin y cómo llegó a desarrollar la teoría de la evolución de las especies. En *Cosmos, un viaje personal*, con el genial Carl Sagan como guionista principal y narrador, aprendí sobre la historia del universo y el origen de la vida. Pero, sobre todo, la serie supuso para mí toda una lección de humildad al hacerme comprender el pequeñísimo lugar que ocupa nuestra especie y nuestro planeta en el universo.

Procariotas versus eucariotas

Se estima que las primeras formas de vida aparecieron en nuestro planeta unos 3.000 millones de años atrás. Por aquel entonces, la composición de la atmósfera terrestre era muy diferente a la actual. Apenas había oxígeno, por lo que toda la vida del planeta se limitaba a bacterias anaeróbicas, muy similares a las actuales, formadas por una única célula de tipo procariota. Al contrario que las eucariotas, éstas no poseen orgánulos, pero sí membrana periférica. El material del núcleo se encuentra flotando en el citoplasma y son capaces de producir energía sin él.

El panorama cambió por completo hace alrededor de 2.400 millones de años, cuando entraron a escena las cianobacterias, unas bacterias más grandes y modernas capaces de producir la fotosíntesis y liberar con ella ingentes cantidades de oxígeno. Millones de años antes de la extinción más famosa que solemos nombrar, la de los dinosaurios, la aparición de las cianobacterias cambió la química atmosférica hasta el punto de desencadenar la conocida como «Gran Oxidación», «Catástrofe del Oxígeno» u «Holocausto del Oxígeno». Se produjo una extinción masiva de la mayoría de los organismos anaeróbicos de la época, para quienes el oxígeno era tóxico.

¿Cómo hemos llegado de aquellas cianobacterias a la tremenda diversidad de animales y plantas de nuestro planeta? Según la teoría de la evolución, todo es fruto de un largo proceso de competición por la supervivencia entre seres vivos. Los mejor adaptados, gracias a la aparición de mutaciones aleatorias que les proporcionaban una ventaja competitiva, eran los que sobrevivían y eran capaces de transmitir sus genes a su descendencia.

La teoría de la evolución de las especies me fascinó desde el minuto uno. Creo que resulta esencial comprender de dónde venimos para entender cómo nos comportamos y hacia dónde vamos. Con los años, sin embargo, me atreví a admitir que la teoría de Darwin no me satisfacía del todo y creo que tampoco al gran naturalista inglés. Él mismo admitía no haber logrado explicar la gran incógnita de la procedencia de las variaciones que impulsa la evolución, dejándolo todo en manos del azar de las mutaciones genéticas aleatorias.

Lynn Margulis, la científica rebelde

Es en este punto donde entra en escena Lynn Margulis, de soltera Lynn Alexander, uno de los personajes más relevantes en la historia de la biología. En la década de 1960, esta joven bióloga estadounidense tuvo una idea revolucionaria sobre la evolución de la vida y el origen de las células modernas. Según Margulis, la competición por la supervivencia, junto con el azar de las mutaciones genéticas aleatorias, no bastaban por sí solos para explicar la capacidad de la evolución de generar rasgos nuevos en los seres vivos. Ella postuló que quizá la pieza que faltaba para completar el puzle, la materia oscura de la biología que servía para conectarlo todo, era la cooperación mutua entre especies, conocida como «simbiosis». En otras palabras: que el origen de lo que hoy somos reside en el amor y no tanto en la competición.

Margulis comprendió la importancia de los minúsculos orgánulos presentes en las células de plantas y animales, especializados en obtener energía usando la luz del sol y el oxígeno. Conocidos como «cloroplastos» y «mitocondrias», respectivamente, por su estructura y sus funciones, así como por la particularidad de contener su propio y pequeño ADN, recordaban poderosamente a esas bacterias que evolucionaron para adaptarse a la nueva atmósfera rica en oxígeno.

Aquélla por entonces joven bióloga se planteó si sería posible que nuestras mitocondrias fueran en realidad descendientes de antiguas bacterias, reclutadas en un pasado lejano por otras células para usarlas como centrales de energía internas. Un fenómeno semejante era ya bien conocido y tenía un nombre en biología: la «simbiosis», una asociación de mutuo beneficio. Gracias a ella surgieron las células eucariotas que nos componen, más avanzadas que las procariotas que formaban las bacterias.

En 1970, Margulis desarrolló su teoría en el libro *Origin of Eukaryotic Cells*, donde expuso cómo de aquella gran extinción surgió el amor. Cuando un solitario microbio anaeróbico antiguo (probablemente una *arquea*) absorbió a una desprevenida bacteria aeróbica primitiva (probablemente del género *rickettsia*) que había evolucionado para adaptarse a la nueva atmósfera rica en oxígeno, comenzó la magia del amor. Aquella arquea decidió no

usar como alimento a esa mitocondria prehistórica y, en su lugar, le propuso una relación de mutuo beneficio.

La arquea protegía y alimentaba a la mitocondria y, a cambio, ésta producía la energía. El tiempo consolidó la relación entre ambas hasta el punto de que la mitocondria traspasó la mayoría de sus genes al núcleo de la célula que la hospedaba. Sólo se quedó con el ADN esencial para cumplir su papel vital: **producir energía**.

Conocido como **ADN mitocondrial (ADNmt)**, al ser circular, se parece más al de ciertas bacterias que al de las células eucarióticas, que tienen la forma característica de doble hélice. Es un genoma muy pequeñito de tan sólo 37 genes que codifican las 13 proteínas necesarias para la **fosforilación oxidativa**, o, en otras palabras, la síntesis de ATP a partir del oxígeno que respiramos. Además, posee 22 ARN de transferencia y 2 ARN ribosomales. Más allá de especificidades científicas, lo fundamental aquí es que la simbiosis con la arquea permitió a la mitocondria quitarse todo el equipaje de sobra que la estorbaba en el trabajo de producir energía. Como un atleta de élite que delega responsabilidades en el resto del equipo, gracias a la simbiosis, la mitocondria pudo explotar todo su potencial.

Al desprenderse de toda función que no fuese la de producir energía, su capacidad energética se disparó exponencialmente. Por primera vez, creaba suficiente combustible como para construir tejidos y órganos más complejos, impulsando la aparición de los organismos multicelulares. El largo camino evolutivo hacia la vida compleja que hoy conocemos acababa de comenzar.

Gracias a su descubrimiento, Lynn Margulis se ha convertido en uno de los personajes más relevantes de la biología del siglo xx. Recogió las denostadas ideas de pioneros como Ivan Wallin y Konstantin Mereschkowski, que habían postulado la simbiosis entre organismos simples como fuerza creadora de seres más complejos, y las dotó de solidez científica.

Margulis no sólo nos dejó valiosas enseñanzas a nivel evolutivo, sino que también nos regaló su historia vital como ejemplo de superación. Sus propuestas, en los márgenes de la ciencia establecida, le granjearon fama de rebelde. Sus investigaciones fueron rechazadas hasta en quince revistas científicas. En una de sus solicitudes de publicación recibió la siguiente réplica: «Su investigación es basura. No se moleste en volver a solicitarlo». Cuando su trabajo finalmente se publicó, no tuvo ninguna repercusión inicial. Pero ella nunca desistió.

No fue hasta 2015 cuando un equipo de investigadores de la Universidad Heinrich Heine de Düsseldorf, en Alemania, dirigido por el biólogo evolutivo William F. Martin, dotó de credibilidad a la teoría de la endosimbiosis de Margulis. Para ello rastrearon el origen de los genes bacterianos que forman parte integral del ADN presente en el núcleo celular de los organismos superiores, incluidos los humanos. Tras comparar casi un millón de genes de 55 especies eucariotas y más de 6 millones de genes de procariota, demostraron la contribución genética de los ancestros de las mitocondrias al material genético de los organismos pluricelulares modernos.

El tiempo y la ciencia han acabado por dar la razón a la científica rebelde que añadió el factor de la cooperación entre especies a los postulados de Darwin. Ojalá hubiera vivido para verlo, ya que falleció en 2011, tras una intensa vida personal que tampoco se quedó atrás de su rebeldía intelectual: a los cuarenta y dos años ya se había divorciado dos veces, la segunda del químico Thomas Margulis; la primera, del astrónomo Carl Sagan.

Lynn Margulis propuso elegantemente una historia compartida entre bacterias y mitocondrias, una historia en la que la cooperación es fundamental. Esta relación se ha convertido desde entonces en la piedra angular de la biología celular moderna y hoy podemos extraer interesantes conclusiones de ella.

La primera ha sido ignorada durante mucho tiempo por la comunidad científica e incide en la interacción de nuestras mitocondrias y el resto de las bacterias que nos componen, es decir, nuestra microbiota. Más adelante desarrollaremos cómo la relación entre ambas sustenta en buena medida nuestra salud y nuestra longevidad. Lo que beneficia a nuestra microbiota beneficia a nuestras mitocondrias, ídem para lo que las perjudica.

Como acabamos de ver, las mitocondrias son bacterias y poseen su propio ADN que, por supuesto, no es humano sino bacteriano. Otra conclusión que se deriva de la obra de Margulis es que en ese ADN mitocondrial se asienta la mayor parte de la información genética que codifica la producción de energía de nuestro organismo. Dado que todo depende de la energía, podríamos decir que el ADNmt es la piedra filosofal de nuestra salud.

Por si fuera poco, el ADN mitocondrial tiene otra característica que lo convierte en único. El ADN mitocondrial del padre no se transmite a la descendencia. Como demostró Douglas C. Wallace, este genoma tan especial sólo se hereda de la madre. Es más, todo el ADN mitocondrial de nuestra especie proviene de una misma mujer. La madre común de toda la humanidad vivió en África Oriental hace unos 200.000 años y es conocida como «Eva mitocondrial». Esto no quiere decir que fuera la primera mujer, pero sí el ancestro materno más reciente común a toda la humanidad actual, **la madre de nuestra especie**. Nos creemos muy importantes, incluso únicos, pero lo cierto es que todos venimos del mismo sitio.

Lo que tiene que quedar claro es que el ADN mitocondrial es especial e importante a partes iguales, por lo que tenemos que protegerlo como se merece de toda la toxicidad de la vida moderna que pueda dañarlo. El sedentarismo, las deficiencias nutricionales, la dieta de mala calidad, la inflamación, la falta de sueño, la toxicidad química (tabaco, pesticidas, plásticos...), la toxicidad electromagnética (el ADN mitocondrial es muy sensible a las radiaciones electromagnéticas artificiales como las microondas, wifi...) y, por supuesto, la toxicidad mental (estrés psicológico crónico) afectan negativamente a las mitocondrias y, por lo tanto, a nuestra capacidad de producir energía y tener una vida plena.